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Lecture 2 - Wed - Jan 10 - 2024

Section 1

Key to uniqueness of solutions below

Rolle’s theorem which implies if
dG

dx
= 0

then G is locally constant, i.e. if we focus on a point, the graph near that point is horizontal. You should
know the geometric idea behind the proof.

Section 2

General solutions to
dF

dx
= f

are given by a special solution plus a locally constant function. The set of solutions is called the indefinite
integral of f and denoted as ∫

f(x)dx

Section 3

The solution to
dF

dx
= f, F (a) = 0 over [a, b]

is given by F0(x) − F0(a) where F0 is any choice of antiderivative. It is usually called the definite integral
and denoted as ∫ x

a

f(t)dt = F0(x) − F0(a)

Example 0.1
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∫ 1

0

√
1 − x2 dx = π

4

Hint: thinking about the unit circle.

Section 4
Proposition 0.1

If f(x) is an even function over (−∞, ∞), i.e. f(−x) = f(x), then F (x) =
∫ x

0
f(t) dt is odd.

Proof:
Goal: G(x) = F (−x) + F (x) = 0
Note: d

dx G(x) = 0 ⇒ G(x) is constant function, and G(0) = 0. 2

Proposition 0.2

Exercise: If f(x) is an odd function over (−∞, ∞), then F (x) =
∫ x

0
f(t) dt is even.

Lecture 3 - Fri - Jan 12 - 2024

We introduced some basic integration in the class, but I am a little too lazy to copy them down
since they can be found online easily.
Exercise: Prove:

d

dx
arctan(x) = 1√

1 − x2

Proof: We let y = arcsin(x) and hence x = sin(y), therefore, we obtain

dy

dx
= 1

dx
dy

1= 1
cos(y) = 1√

1 − x2

Remark: dx
dx = d sin(y)

dx ⇒ 1 = y′ cos(y) ⇒ y′ = 1
cos(y) .

as desired. 2

Example 0.2

∫ 1
(x − 1)(x − 2) dx =

∫ 1
x − 2 − 1

x − 1 dx

= ln |x − 2| + ln |x − 1| + C
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Example 0.3

∫ 1
sin2(x) cos2(x)

dx =
∫ sin2(x) + cos2(x)

sin2(x) cos2(x)
= tan(x) − cot(x) + C

However, sometimes breaking things up, so we need to introduce other tricks to make our life better.

Method 1: Substitution a.

Definition 0.1

d F ◦ G

dx
= (F ′ ◦ G)

(
dG

dF

)
⇒

∫
F ′ ◦ G

dG

dF
= F ◦ G + C

Example 0.4

∫
ex

1 + ex
dx = 1

1 + ex
d (1 + ex)

= ln |1 + ex| + C

Method 1: Substitution b.

Definition 0.2 ∫
f ◦ φ(t)φ′(t) dt = G(t) + C ⇒

∫
f(x) dx = G ◦ φ−1(x) + C

Proof:

d G ◦ φ−1(x)
dx

= dG

dt
· dφ−1

dt

= f ◦ φ · dφ

dt
· dφ−1

dx
= f ◦ φ

as desired. 2

Example 0.5

Evaluate ∫ 1√
ex + 1

dx
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We replace t =
√

ex + 1 ⇒ x = ln(t2 − 1). Therefore the original expression is equal to∫ 1√
ex + 1

dx =
∫ 1

t
d
(
ln(t2 − 1)

)
=
∫ 2

t2 − 1 dt

=
∫ (t + 1) − (t − 1)

(t + 1)(t − 1) dt

= ln
∣∣∣∣ t − 1
t + 1

∣∣∣∣+ C

Method 2

Definition 0.3

We note that

d

dx
(fg) = df

dx
g + f

dg

dx

⇒ fg + C =
∫

df

dx
g dx +

∫
f

dg

dx
dx

⇒ fg + C =
∫

g df +
∫

f dg

⇒
∫

f dg = fg −
∫

g df

Example 0.6

∫
ex sin(x) dx =

∫
sin(x) d (ex)

= ex sin(x) −
∫

ex d(sin(x))

= ex sin(x) −
∫

ex cos(x) dx

= ex sin(x) −
∫

cos(x) d (ex)

= ex sin(x) − ex cos(x) −
∫

ex d(cos(x))

= ex sin(x) − ex cos(x) −
∫

ex sin(x) dx

Therefore ∫
ex sin(x) dx = ex

2 (sin(x) − cos(x))

Lecture 4 - Mon - Jan 15 - 2024
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Exercise: Show that
d
(
f−1(y)

)
dy = 1

f ′ ◦ f−1(y)

Proof: We know that (
d f−1

d y

)(
d y

d f−1

)
= 1

⇒ d f−1

d y

(
d f ◦ f−1

d f−1

)
= 1

d f−1

d y

(
f ′ (f−1(y)

))
= 1

⇒ d f−1

d y
= 1

f ′ ◦ f−1(y)

as desried. 2

Exercise: Show that ∫
f−1(x) dx = xf−1(x) − F

(
f−1(x)

)
Proof: We know that ∫

f−1(x) dx = xf−1(x) −
∫

xd
(
f−1(x)

)
= xf−1(x) −

∫
f
(
f−1(x)

)
d
(
f−1(x)

)
= xf−1(x) − F

(
f−1(x)

)
as desired. 2

Example 0.7

Evaluate ∫
xex

(1 + x)2 dx

Proof: There are two ways of doing this problem:

1. Method 1: ∫
xex

(1 + x)2 dx = −
∫

xex d

(
1

1 + x

)
= − xex

1 + x
+
∫ 1

1 + x
d (xex)

= − xex

1 + x
+
∫

xex + ex

1 + x
dx

= − xex

1 + x
+ ex + C

= ex

1 + x

5



2. Method 2:

Notice that ∫
ex

1 + x
dx = 1

1 + x
d (ex)

= ex

1 + x
+
∫

ex

(1 + x)2 dx

Therefore, we can obtain that∫
xex

(1 + x)2 dx =
∫

ex

1 + x
dx −

∫
ex

(1 + x)2 dx

= ex

1 + x

as desired. 2
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Tutorial 1 - Mon - Jan 15 - 2024

Problem 1.
d

dx
arcsin x

Proof: Fundamental. 2

Problem 2.
∫

(ex + 2)10 dx

Proof: Let t = ex + 2, so ∫
(ex + 2)10

dx =
∫

t10 d (ln(t − 2))

=
∫

t10

t − 2 dt

2

Problem 3.
∫ 1

1 − x2 dx

Proof: ∫ 1
1 − x2 dx = −

∫ 1
x2 − 1 dx = −1

2

∫ (x + 1) − (x − 1)
(x + 1)(x − 1) dx

boom, one liner. 2

Problem 4. Find
∞∑

n=0
(−1)n (2n + 1)x2n

(2n)! given cos x =
∞∑

n=0
(−1)n x2n

(2n)!
Proof: Solution = −x sin x + cos x. 2

Problem 5.
∫

ln x dx

Proof: ∫
ln x dx = x ln x −

∫
x d (ln x)

= x ln x −
∫

dx

= x ln x − x + C

too trivial. 2
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Problem 6.
∫

ex cos x dx

Proof: Check Lecture 3 example 0.6 2

Lecture 5 - Wed - Jan 17 - 2024

Hardly any lecture notes today. þ

One of the most important example would be

Example 0.8

We would like to figure out what the following is:∫ 1
(t2 + 1)k

dt

Here, we need to use a method that brings down the power ”k”, and thus we can evaluate the indefinite
integral using ”induction”. (However, due to the low time efficiency of this method, only use it when
you have no other choices).

Proof: We evaluate∫ 1
(t2 + 1)k

dt =
∫

t2 + 1 − t2

(t2 + 1)k
dt

=
∫ 1

(t2 + 1)k−1 dt −
∫

t2

(t2 + 1)k
dt

=
∫ 1

(t2 + 1)k−1 dt − 1
k − 1

∫
t2 · 1

2t
d

(
1

(t2 + 1)k−1

)

=
∫ 1

(t2 + 1)k−1 dt − 1
2k − 2

 t

(t2 + 1)k−1 −
∫ 1

(t2 + 1)k−1 dt︸ ︷︷ ︸
⋆


Notice that we can evaluate the leftmost part easily, and we have successfully brought the power down to
k − 1. Thus, repeating the process will eventually bring us the desired solution (Just tedious :3). 2

Example: We will talk about how we can change the variable using trigonometry next lecture.

Lecture 6 - Fri - Jan 19 - 2024

Recall from last lecture, , we try to solve
∫ 1

(1 + x2)2 dx, the trick is that the above expression is

equal to
∫ 1 + x2 − x2

(1 + x2)2 dx, and thus we can break the question down and bring the exponent down by 1.

Exercise: Do the same trick for
∫ 1

(1 + x2)3 dx.

In general, if you have a rational function, Q(x)
P (x) such that deg(Q) < deg(P ), we can always break

the question down by factor the denominator and group the like terms (this is the algorithm behind how
computer solve such problems).
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However, there are also other cases, suppose we have
∫

R(cos(θ), sin(θ)) dθ,

Example: R(x, y) = x + y

x3 + y3 ,
1

x + y
,

x7

x5 + 6y + 8y6 , . . .

Weierstrass substitution

There is a trick called Weierstrass substitution, by taking t = tan θ
2 , we can simplify the question a lot.

Remark: The intuition behind this method is the unit circle.
Therefore, we want to solve the system of equationsy = t(x + 1)

x2 + y2 = 1
⇒

x2 + t2(x + 1)2 = 1

(1 + t2)x2 + 2t2x + t1 − 1 = 0

Since we know that one of the solution is x1 = −1, we can then obtain that (by Vieta’s Theorem) the other

solution is x2 = 1 − t2

1 + t2 , y2 = 2t

1 + t2 . And this implies that

(cos(θ), sin(θ)) =
(

1 − t2

1 + t2 ,
2t

1 + t2

)

Therefore, we can substitute the solution back into the integral and obtain
∫

R(cos(θ), sin(θ)) dθ =∫
R

(
1 − t2

1 + t2 ,
2t

1 + t2

)
dθ, and after solving for dθ (recall that we have t = tan θ

2 ), we simplify the question

to just solving for rational functions (which we are more familiar with):∫
R

(
1 − t2

1 + t2 ,
2t

1 + t2

)
2 dt

1 + t2

Example 0.9

We can also derive them in the direct way to check out solutions:

x = cos(θ) =
cos2 θ

2 − sin2 θ
2

cos2 θ
2 + sin2 θ

2

=
1 − tan2 θ

2
1 + tan2 θ

2

= 1 − t2

1 + t2

y = sin(θ) =
2 sin θ

2 cos θ
2

cos2 θ
2 + sin2 θ

2

=
2 tan θ

2
1 + tan2 θ

2

= 2t

1 + t2

Example: Suppose we have R(x,
√

1 − x2) dx, we let x = cos θ, then we can obtain that

R(x,
√

1 − x2) dx = −R (cos θ, sin θ) sin θ dθ

9



Example: Suppose we have R(x,
√

x2 − 1) dx, we let x = eu+e−u

2 , then we can obtain that

R(x,
√

x2 − 1) dx = R

(
eu + e−u

2 ,
eu − e−u

2

)
eu − e−u

2 du

= R

(
eu + e−u

2 ,
eu − e−u

2

)
1 − (e−u)2

2 d (eu)

And then we let t = et, we would then obtain a rational function that we can easily integrate.

Feymann’s Trick

It is important for us to remind you that this is the trick a physicist used þ.

Example 0.10

Suppose we want to find
∫ ∞

0

sin x

x
dx. The trick is that assume we want to compute something

like F (t) =
∫ ∞

0

sin x

x
e−tx dx, so our goal is to find F (0). Taking the derivative of it to obtain

F ′(t) = −
∫ ∞

0
sin xe−tx dx, which yields us the answer: t sin x + cos x

1 + t2 e−tx

∣∣∣∣∞
0

= − 1
1 + t2 . Moreover,

we know that F (∞) = 0, so we can get F (t) = arctan t + π
2 , which gives us that F (0) = π

2 .

Tut 1.1 - Fri - Jan 19 - 2024

I dont guarantee everything in this section is correct, I just copied :3
Suno’s (Ethan’s) version of notes is called riemann_integrable_countable_disc.pdf

When is a function integrable?

We first need to know some definitions:

Definition 0.4: Countable

S is countable if there is a bijection between N and S.
Example: Q is countable, while R is not countable.

Definition 0.5: Open & Closed

For an open interval U , if x ∈ U , then there exists δ > 0 such that (x − δ, x + δ) ⊆ U .
We call an interval C closed if R\C is open.
Example: (0, 1) is open, while [0, 1] is closed.

Definition 0.6: Oscillation

10



The oscillation on an open interval U is

ωf (U) = sup
y,z∈U

∣∣f(y) − f(z)
∣∣

and the oscillation at a point x0 is

ωf (x0) = lim
h→0

ωf (x0 − h, x0 + h)

Remark: Oscillation at a point is a measure of how discontinuous the function is.

Result 0.1

What does it maean to have ωf (x0) = 0, this means that we would have lim
h→0

ωf (x0 − h, x0 + h) = 0,
which is equivalent to

lim
h→0

sup
y,z∈(x0−h,x0+h)

∣∣f(y) − f(z)
∣∣ = 0

hence if h is δ, then we would have
∣∣f(y) − f(z)

∣∣ < ϵ, which means the function is continuous!

Example 0.11: Removable discontinuity

Suppose we have function

f(x) =

x2 x ̸= 2

6 x = 2

Therefore, we have ωf (2) = 6 − 4 = 2.

Example 0.12: Jump discontinuity

Suppose we have function

f(x) =

1 x ≥ 0

−1 x < 0

Therefore, we have ωf (0) = 2.

Example 0.13: Essential discontinuity

Suppose we have function

f(x) = 1
x

therefore we have ωf (0) = ∞.

11



Definition 0.7: Compactness

A set K is compact if for every open cover on K there exists a finite subcover. We mean open
cover by {

Ui

}∞

i=1
s.t. K ⊆

∞⋃
i=1

Ui

Definition 0.8: Reachable

We say that x ∈ [a, b] is reachable if [a, x] can be covered by finitely manu open sets

Theorem 0.1: Heine-Burel

If a set S is closed and bounded, then S is compact.

Proof: To prove the theorem, we have two steps

1. Prove that [a, b] is compact

2. Prove that S ⊆ [a, b] is compact

To prove (1), if b is reachable, then we are done. If b is not reachable, then let x ∈
{

x ∈ [a, b] :

x is not reachable
}

, thus there exists a greatest lower bound x0. We take some small interval [a1, b1] ∋ x0.
By archimedian property there exist x1, x2 such that a1 < x1 < x0 < x2 < b1. Thus we have

x2 > x0 → x2 is not reachable

x1 < x0 → x1 is reachable so [a, x1] can be finitely covered

Take covering for [a, x1] and add the open set (a1, b1), so [a, x2] is finitely covered, which implies that x2 is
reachable, contradicting our assumption. Therefore [a, b] is compact.

Now we want to prove (2). If S closed, and S ⊆ [a, b], we let
{

Ui

}∞

i=1
be open cover for S,

then
{

Ui

}∞

i=1
∪
{

[a, b]\S
}

is an open cover for [a, b]. Then there exists finite subcover of [a, b] given by
Ui, . . . , UiN , [a, b]\S, so S is covered by Ui, . . . , UiN . 2

Now we can go back to our original question.
Let f : [a, b] → R have countably many discontinuities. Define Ds =

{
x ∈ [a, b] : ωf (x) ≥ s

}
for

some s > 0. Take some x0 ∈ [a, b]\Ds we would have ωf (x0) = t < s, then

sup
y,z∈

(x0−h,x0+h)

∣∣∣∣f(y) − f(z) − t

∣∣∣∣ < ϵ

for small h. For y ∈ (x0 − h, x0 + h), we have

∑
···

∣∣∣∣f(y) − f(z)
∣∣∣∣ < t + ϵ︸︷︷︸

s−t
2

≤ s + t

2

12



which implies that ωf (y) < s for y ∈ (x0 − h, x0 + h), which further implies that [a, b]\Ds is open.
Therefore we have Ds ⊆ [a, b] is closed is bounded, which implies compactness, and it is countable

because it is the subset of all discontinuities.

Ds =
{

Si

}∞

i=1
S ⊆

∞⋃
i=1

(
Si − ϵ

2i+2(M − m) , Si + ϵ

2i+2(M − m)

)
︸ ︷︷ ︸

Ii

where M = sup
x∈[a,b]

f(x) and m = sup
x∈[a,b]

f(x). We then define

[a, b]\
N⋃

j=1
Iij︸ ︷︷ ︸

ωf (x0)<s

to be C, then there exist δx0 such that for all y, z ∈ (x0 − δx0 , x0 + δx0) we have
∣∣∣f(y) − f(z)

∣∣∣ < s. Therefore

{
(x0 − δx0 , x0 + δx0) : x0 ∈ C

}
is an open cover for C, and because it is closed and bounded, so it is compact. Hence there exist finite
subcover

(x0 − δx0 , x0 + δx0), . . . , (xk − δxk
, xk + δxk

)

so
xi − δxi

, xi + δxi︸ ︷︷ ︸
C2

and Ii1 , . . . , IiN︸ ︷︷ ︸
C−2

together cover [a, b]. We can then choose a partition P of [a, b] such that each interval

U(f, P ) − L(f, P ) =
∑
C1

(
M(yi) − m(yi)

)
∆yi +

∑
C2

(
M(yi) − m(yi)

)
∆yi

≤ (M − m)
∑
C1

∆yi + (M − m)
∑
C2

∆yi

13



Moreover, we know

(M − m)
∑
C1

∆yi ≤ (M − m)
N∑

j=1
∆Iij

≤ (M − m)
∞∑

j=1
∆Iij

≤ (M − m)
∞∑

j=1

ϵ

2i(M − m)

≤ (M − m) ϵ

2(M − m)

= ϵ

2
(M − m)

∑
C2

∆yi ≤ s
∑
C2

∆yi

≤ s
∑
C2

(b − a)

and because we know that s is arbitrary, so we can simply choose s to be ϵ

2(b − a) . ■

Lec 7 - Mon - Jan 22 - 2024

Given function f continuous and the graph as shown below,

x

y

Goal:
Define the area of the shaded region

A(x)

and show that d A(x)
dx = f

14



Remark: The intuition lying behind this is that assume A(x) is well-defined, then we would have

dA

dt
= lim

h→0

A(x + h) − A(x)
h

= lim
h→0

h · f(x′)
h

for x′ ∈ [x, x + h]

= f(x)

since x′ is getting close to x?

Riemann Sum

Suppose we have partition

T : x0 = a < x1 < · · · < xn = x,

||T || = max1≤i≤n ∆xi

= max1≤i≤n

∣∣∣xi+1 − xi

∣∣∣
then we have

S(T, ξ) =
n∑

i=1
f(ξi)∆xi

We also define

A(x) :=
∫ x

a

f(t) dt = lim
||T ||→0

S(T, ξ)

and we know that if lim||T ||→0 S(T, ξ) exists, then there exists A(x) so that for any ϵ > 0, there exists δ > 0
such that if ||T || < δ, then ∣∣∣A(x) − S(T, ξ)

∣∣∣ < ϵ

15



We know that lim
||T ||→0

S(T, ξ) is ”indeed well-defined” (Chen, 2024), and we define

S(T ) =
∑

1≤i≤n

Mi∆xi Mi = sup
[xi,xi+1]

f(x)

S(T ) =
∑

1≤i≤n

mi∆xi Mi = inf
[xi,xi+1]

f(x)

Result 0.2

Therefore we have the following result

S(T ) ≤ S(T, ξ) ≤ S(T )

Example 0.14: Key observation:

Given two partitions T and T ′, we have

S(T ) ≤ S(T ∪ T ′) ≤ S(T ∪ T ′) ≤ S(T )

because of the monotonocity of the partition.

Therefore, now we want to show that

lim
||T ||→0

S(T )

exists.
Proof: We need to show that lim

||T ||→0
S(T ) = sup

T
S(T ). SFAC that the above statement does not hold, then

we would have lim
||Ti||→0

S(Ti) < sup
T

S(T ). Therefore, for some T ′, we have lim
||Ti||→0

S(Ti) < S(T ′). Note that

S(T ′) ≤ S(Ti ∪ T ′) ≈ S(Ti) for i large, which implies that S(T ′) ≤ lim
i

S(Ti). 2

Remark: Similarly, we can find that lim
||T ||→0

S(T ) exists too (by taking the negative of the original function

and argue for the lim
||T ||→0

S(T )) again.

Theorem 0.2

lim
||T ||→0

S(T ) = lim
||T ||→0

S(T )

Proof: It is equivalent to show that

lim
||T ||→0

∑
i

(Mi − mi)∆xi = 0

Since f is continous, then for all ϵ > 0, there exists δ > 0 such that for z1 − z2 < δ we would have
f(z1) − f(z2) < ϵ. Hence we let the partition to be smaller than δ, and thus we have Mi − mi < ϵ, which

16



implies
lim

||T ||→0

∑
i

(Mi − mi)∆xi = 0 < ϵ

and thus we have lim
∑

i

Mi∆xi = 0 lim
∑

i

mi∆xi = 0. 2

Lec 8 - Wed - Jan 24 - 2024

Chen noticed that the last lecture was not rigorous enough (plus the fact that we are waaaaaay
ahead of the other section), so he decided to do the proofs ”a lil more” rigorously :3.

Recall from last lecture, we want to prove that

Goal 0.1

Show that lim
||Ti||→0

S(T ) = sup
T

S(T ) exists

Proof: SFAC that the limit does not approach the desired value, instead, suppose we have

lim
||Ti||→0

S(T ) < sup
T

S(T )

Hence we can find a new fixed partition T ′ (”this is true” - Chen 2024) such that we have

lim
||Ti||→0

S(T ) < S(T ′) ≤ sup
T

S(T )

which is equivalent to saying that S(T ′) lies in between lim
||Ti||→0

S(T ) and sup
T

S(T ). Nevertheless, we can

also find that the total difference between

lim
||Ti||→0

S(Ti) − lim
i→∞

S(Ti ∪ T ′) ≤ lim
||Ti||→0

(
max|f |︸ ︷︷ ︸

fixed

·||Ti|| · |T ′|︸︷︷︸
fixed

)
= 0

Therefore we concluded that lim
||Ti||→0

S(T ) is arbitrarily close to S(T ′) for whatever partition T ′ we choose,

and thus we can conclude that lim
||Ti||→0

S(T ) = sup
T

S(T ) exists. 2

Exercise: Using the similar argument, show that lim
||Ti||→0

S(Ti) = inf
T

S(T )

Goal 0.2

Show that lim
||T ||→0

S(T ) = lim
||T ||→0

S(T )

Proof: It is equivalent to showing that

lim
||T ||→0

(
S(T ) − S(T )

)
= 0

17



which is also equivalent to showing that

lim
||T ||→0

( n≈∞∑
i=1

(Mi − mi)∆xi

)
= 0

To show the above equation, we need to recall that we assume function f to be continous and bounded,
thus by Heine-Cantor theorem, it is uniformly continuous on a closed bounded interval. Therefore, ∀ ϵ > 0,
∃ δ > 0 such that for all z1, z2 ∈ [a, x], if z1 − z2 < δ, we would have f(z1) − f(z2) < ϵ. This means a lot to
us because now for our small enough partition, we have

n∑
i=1

(Mi − mi)∆xi ≤ ϵ

n∑
i=1

∆xi

= ϵ(b − a)

which trivially approaches 0 as ϵ gets indefinitesmally small. Therefore, as a result, we obtain that
lim

||T ||→0
S(T ) = lim

||T ||→0
S(T ) is indeed true. 2

Result 0.3

1. If f is bounded, then lim
||T ||→0

S(T ) = lim
||T ||→0

S(T ) are both well-defined.

2. Definition below.

Definition 0.9: Riemann Integrable

Given f bounded over [a, x], if lim
||T ||→0

S(T ) = lim
||T ||→0

S(T ),

then f is called Riemann integrable over [a, x].

Exercise: Show that an increasing function over [a, x] is Riemann integrable.
Proof:

2

Lec 8.1 (Shum section) - Wed - Jan 24 - 2024

Fundamental Theorem of Calculus
Theorem 0.3: FTC

1. Suppose F is differentiable and riemann integrable, then we have∫ b

a

F ′(x) dx = F (b) − F (a)

18



2. Suppose f is continuous and integrable, then we have

d

dx

∫ x

a

f(t) dt
∣∣∣
x0

= f(x0)

Proof:
2

Theorem 0.4: Extended FTC2

Suppose function f is continuous on [a, b] and g : [c, d] → [a, b] be differentiable on [c, d], then

d

dx

∫ g(x)

a

f(t) dt = f(g(x))g′(x) ∀ x ∈ (c, d)

Proof: Define G(y) =
∫ y

a

f(t) dt, and thus F (x) =
∫ g(x)

a

f(t) dt = (G ◦ g)(x). Therefore, by chain rule, we
can obtain that

F ′(x) = G′(g(x))g′(x)

as desired. 2

Example 0.15

Differentiate the sine integral function Si(x) =
∫ x

a

sin(t)
t

dt.

Proof: We should interpret this as the integral of f(x) =

 1
x sin(x) x ̸= 0

1 x = 0
. By FTC2, we then have

d

dx
Si(x)

∣∣∣∣
x0

= f(x0) =

 1
x0

sin(x0) x0 ̸= 0

1 x0 = 0

as desired. 2

Example 0.16

Evaluate d

dx

∫ x

1

sin(t)
t

dt

Proof: We simply have ∫ x

1

sin(t)
t

dt =
∫ x

0

sin(t)
t

dt −
∫ 1

0

sin(t)
t

dt︸ ︷︷ ︸
constant term

as desired 2
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Example 0.17

Evaluate d

dx

∫ x2

0

sin(t)
t

dt

Proof: We have

d

dx

∫ g(x)

0

sin(t)
t

dt = sin(g(x))
g(x) · g′(x)

= sin(x2)
x2 · 2x

= 2 sin(x2)
x

x ̸= 0

However, when x = 0. we have g(x) = 02 = 0, g′(x) = 2(0) = 0, and f(g(0)) = 1, thus

d

dx

∫ x2

0

sin(t)
t

dt

∣∣∣∣
x=0

= (1)(0) = 0

as desired. 2

Lec 9 - Fri - Jan 26 - 2024

Theorem 0.5

If function f ≥ 0 over [a, b], then ∫ b

a

f(x) dx ≥ 0

and the equality holds if and only if f(x) ≡ 0.

Proof: Since we know that ∫ b

a

f(x) dx ≥ 0 = lim
||T ||→0

S(T ) = lim
||T ||→0

∑
i=1

mi∆xi

where we know that both mi and ∆xi are greater or equal to 0, thus the whole thing ≥ 0. 2

Corolary 0.1

As a consequence, suppose f and g are continous, we have(∫ b

a

fg dx

)2

≤

(∫ b

a

f2 dx

)(∫ b

a

g2 dx

)

Proof: We know that ∫ b

a

(f + tg)2 dx ≥ 0

20



Hence we define
G(t) := t2

∫ b

a

g2 dx + 2t

∫ b

a

fg dx +
∫ b

a

f2 dx ≥ 0

which is essentially a parabola, so we consider the minimum point of the porabola:

G′(t) = 0 ⇒ t0 = −
∫ b

a
fg dx∫ b

a
g2 dx

Therefore, pluging t0 into G(t) we can obtain that G(t0) ≥ 0, which gives us the result. 2

Theorem 0.6: Fundamental T of Calculus

We have
d

dx

∫ x

a

f(t) dt = f(x)

Proof: Notice that

LHS = lim
h→0

∫ x+h

a
f(t) dt −

∫ x

a
f(t) dt

h

= lim
h→0

∫ x+h

x
f(t) dt

h

Therefore we can obtain that

LHS − RHS = lim
h→0

∫ x+h

x
f(t) − f(x) dt

h

Since f is continous at x, then for all ϵ > 0, there exists δ > 0 such that if |t−x| < δ, we have |f(t)−f(x) < ϵ|,
this yields us that

lim
h→0

∣∣∣∣∣
∫ x+h

x
f(t) − f(x) dt

h

∣∣∣∣∣ ≤ lim
h→0

∫ x+h

x
|f(t) − f(x)| dt

|h|

<

∫ x+h

x
ϵ dt

|h|
= ϵ

as desired. 2

Result 0.4

Why do we need such an abstract consequence?

Example 0.18

Suppose we want to find
F (x) =

∫ x

0
e−t2

dt

21



We now know that dF
dx = e−x2

F (0) = 0

The question we solved before (HW1 & HW2) all have explicit solutions, but for this one, we cannot
find a direct solution. The above result suggests that there exists a theoreticla solution.
Exercise:

dF

dx
= e−x2

= n

0
∞ (−1)nx2n

n!

⇒ F = n

0
∞ (−1)nx2n+1

(2n + 1)n!

Example 0.19

Evaluate ∫ ∞

0
e−x2

dx

Proof:

I(t) =
∫ ∞

0

e−x2

1 +
(

x
t

)2 dx

Hence our goal is I(∞)

I(t) = t

∫ ∞

0

e( x
t )2

t2

1 +
(

x
t

)2 d
(x

t

)
= t

∫ ∞

0

e−t2x2

1 + x2 dx

Notice that we have I(0) = 0, and lim
t→0

I(t)
t

= π

2 , thus

t−1I(t)e−t2
=
∫ ∞

0

e−t2(x2+1)

1 + x2 dx

⇒ d

dx

(
t−1I(t)e−t2

)
= −2t

∫ ∞

0
e−t2(x1+1) dx

= −2e−t2
I(∞)

⇒
∫ ∞

0

d

dx

(
t−1I(t)e−t2

)
= −2

∫ ∞

0
e−t2(x2+1) dtI(∞)

⇒ − lim
t→0

e−t2
I(t)
t

= −2I(∞)2

⇒ −π

2 = −2I(∞)2
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which yields us that I(∞) =
√

π

2 , thus implying that

∫ ∞

0
e−x2

dx =
√

π

2

as desired. 2

Lec 10 - Mon - Jan 29 - 2024

Goal 0.3

There is another approach of computing
∫ ∞

0
e−x2

dx by considering
∫ ∞

−∞
e−x2

dx ·
∫ ∞

−∞
e−t2

dt. The

intuition is thinking about the diagram in three dimensional space, and we are calculating the volumn
of the shape. We will learn how to deal with this in the future.

Substitution
Theorem 0.7: Substitution

Remark: Recall FTC2 a bit from Shum’s section.
We have ∫ b

a

f(x) dx =
∫ β

α

f ◦ φ(t) · φ′(t) dt

where φ([α, β]) = [a, b] and φ′ exists (idealy continuous).

Proof: Notice that LHS =
∫ φ(β)

a

f(x) dx, thus

d

dβ
LHS = f(φ(β)) · φ′(β)

d

dβ
RHS = f ◦ φ(β) · φ′(β)

since φ([α, β]) = [a, b]. Hence LHS = RHS. 2

Integration by Parts

Theorem 0.8: Integration by Parts

We have ∫ b

a

u dv = uv
∣∣∣b
a

−
∫ b

a

v du
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Proof: Notice that

d

db
LHS = u(b)v′(b)

d

db
RHS = u′(b)v(b) + u(b)v′(b) + v(b)u′(b)

= u(b)v′(b)

Hence LHS = RHS. 2

Example 0.20

Find
∫ 1

0

arctan x

1 + x
dx

Proof: We can find that∫ 1

0

arctan x

1 + x
dx =

∫ 1

0

arctan x

1 + x
d ln(1 + x) = arctan x ln |1 + x|

∣∣∣1
0

−
∫ 1

0

ln(1 + x)
1 + x2 dx

Thus the point of the question is we want to evaluate the latter part, to evaluate, we have the following two
methods:

1. Method 1

Let x = tan θ, thus we have∫ 1

0

ln(1 + x)
1 + x2 dx =

∫ π/4

0

ln(1 + tan θ)
1 + tan2 θ

d tan θ

=
∫ π/4

0
ln(1 + tan θ) dθ

=
∫ π/4

0
ln(sin θ + cos θ) dθ −

∫ π/4

0
ln cos θ dθ

=
∫ π/4

0
ln
(√

2 sin
(

θ + π

4

))
dθ −

∫ π/4

0
ln cos θ dθ

=
∫ π/4

0
ln

√
2 dθ +

∫ π/4

0
ln
(

sin
(

θ + π

4

))
dθ −

∫ π/4

0
ln cos θ dθ︸ ︷︷ ︸

0

2. Method 2

Let
∫ 1

0

ln(1 + tx)
1 + x2 dx, notice that I(0) = 0 and out goal is I(1).

I ′(t) =
∫ 1

0

x

(1 + x2)(1 + tx) dx

= 1
1 + t2

∫ 1

0

t

1 + x2 + x

1 + x2 − t

1 + tx
dx

= π

4
1

1 + t2 + ln 2
2

1
1 + t2 − ln(1 + t)

1 + t2
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as desired. 2

Lec 10.1 (Shum section) - Mon - Jan 29 - 2024

Substitution
Theorem 0.9: Substitution rule for definite integrals

Let u : [a, b] → I be differentiable with continuous derivative on [a, b] and let f be continuous on I,
then ∫ b

a

f(u(x))du

dx
dx =

∫ u(b)

u(a)
f(u) du

Proof:

d

dx
F (u(x)) = d

du
F (u)

∣∣∣
u=u(x)

· d

dx
u
∣∣∣
x

= f(u(x)) · du

dx
(x)

By FTC1, we have ∫ u(b)

u(a)

d

du
F (u)︸ ︷︷ ︸

f(u)

du = F (u(b)) − F (u(a))

Also, by FTC1, ∫ b

a

f(u(x)) du

dx
dx = G(b) − G(a)

where G is the antiderivative of f(u(x))du

dx
. We can take G = F ◦ u, then

∫ b

a

f(u(x))du

dx
dx = F (u(b)) − F (u(a))

as desired. 2

Example 0.21

Find
∫ 2

0

1
2x + 1 dx.

Proof: Let u = 2x + 1, then du

dx
= 2, thus

∫ 2

0

1
2x + 1 dx =

∫ 2

0

1
u(x) · 1

2
du

dx
dx

= 1
2

∫ 5

1

1
u

du

= 1
2 ln |u|

∣∣∣5
1

= 1
2 ln 5
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as desired. 2

Proposition 0.3

Let f be continuous on [−a, a], for some a > 0

1. If f is even, then ∫ a

−a

f(x) dx = 2
∫ a

0
f(x) dx

2. If f is odd, then ∫ a

−a

f(x) dx = 0

Proof: for part 1 By addition property, we have∫ a

−a

f(x) dx =
∫ 0

−a

f(x) dx +
∫ a

0
f(x) dx

By even property, ∫ 0

−a

f(x) dx =
∫ 0

−a

f(−x)

Use substitution with u = −x, then we would obtain that result. 2

Inverse Trigonometric Substitution

Example 0.22

Find
∫

x
√

1 − x2 dx and
∫ √

1 − x2 dx

Example: This is ann example which is impossible to solve if use the conventional substitution
method.

Example 0.23

Find
∫ 1

−1

√
1 − x2 dx

Proof: let x = sin u, thus we have∫ 1

−1

√
1 − x2 dx =

∫ π/2

−π/2
cos u cos u du

=
∫ π/2

−π/2

1
2 (1 + cos 2u) du

= 1
2

(
u + 1

2 sin 2u

) ∣∣∣π/2

−π/2
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Thus the final answer is π

2 . 2

Tutorial (Shum section) - Mon - Jan 29 - 2024

Example 0.24

Find
∫ 1

0

x − 1
ln x

dx

Proof: Feynman’s Trick (Leibniz integral rule):

d

dt

∫ b

a

f(x, t) dx =
∫ b

a

∂

∂t
f(x, t) dx

We let
I(t) =

∫ 1

0

xt − 1
ln x

dx

Thus our goal is to find I = I(1) − I(0), now we have

∂

∂t
I(t) = ∂

∂t

∫ 1

0

xt − 1
ln x

dx

=
∫ 1

0
xt dx = xt+1

t + 1

∣∣∣1
0

= 1
t + 1

Therefore, recall the FTC and what we have written down, we have

I = I(1) − I(0) =
∫ 1

0
I ′(t) dt

=
∫ 1

0

1
t + 1 dt

which is simple to evaluate. 2

Tutorial (Chen section) - Mon - Jan 29 - 2024

Problem set

1. Let f(x) = x2 on [0, 1], let Tn =
{

0,
1
n

,
2
n

, . . . , 1
}

(a) Compute S(Tn)
Proof: We can find that

S(Tn) =
n∑

i=1

1
n

·
(

i

n

)2

= 1
n3 · n(n + 1)(2n + 1)

6

= (n + 1)(2n + 1)
6n2
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as desired. 2

(b) Compute S(Tn)
Proof: Similarly, we can find that

S(Tn) = S(Tn) − 1
n

I think this is right? 2

(c) Use this to show that f(x) is Riemann integrable and computer
∫ 1

0
x2 dx

Proof:
2

HINT: You may want to use
n∑

i=1
i2 = n(n + 1)(2n + 1)

6 .

2. Let

f(x) =

 1
x x ∈ (0, 1]

0 x = 0

Is f(x) Riemann integrable on [a, b] or not? Why or why not?

3. Show that ∫ a

0
e−x2

dx ≤ 1 + e−1 − e−a

CHALLENGE: Can you find a better bound?

4. We know that continuous functions are Riemann integrable, but the inverse is not true.

(a) Find a discontinuous function which is Riemann integrable, prove by showing lowver sum is equal
to the upper sum.

(b) TRICKY! Find a Riemann-integrable function with infinitely many discontinuities.
Proof: Consider

f(x) =

1 x = 1
n for n = 1, 2, . . .

0 otherwise

as desired. 2

(c) Challenge: Find a function with uncountably many discontinuities.
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Lec 11 - Wed - Jan 31 - 2024

Recall from last lecture, we wanted to evaluate
∫ 1

0

ln(1 + x)
a + x2 dx, and we can parameterize it by

defining

Example 0.25

parameterize

I(t) =
∫ 1

0

ln(1 + tx)
a + x2 dx

Notice that I(0) = 0 and our goal is I(1).

How accurate is Taylor Expansion?

Suppose we have functino f and first order Taylor polynomial, then

|f − f1| = O
(
(x − x0)2)

We will show that the difference is bounded by M(x − x0)2 if |f ′′(x)| ≤ M .
Remark: This is an application of the Fundamental Theorem of Calculus.

Suppose function f(x), then the first order taylor polynomial of f at point a is

f1(x) = f(a) + f ′(a)(x − a)

and we define the error by
R = f(x) − f(a) + f ′(a)(x − a)

Goal 0.4

The key idea for this is to view R as a function of a while x is fixed instead.

Therefore, we have
R(a) = f(x) − f(a) + f ′(a)(x − a)

Hence we have R(x) = 0
dR
da = −f ′(a) + f ′′(a)(x − a) + f ′(a) = f ′′(a)(x − a)

Therefore we have

R(a) =
∫ a

x

dR

dã
dã

=
∫ a

x

f ′′(ã)(x − ã) dã
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Goal 0.5

Our goal (claim) is

R(a) = −f ′′(ξ)
∫ a

x

(x − ã) dã

for some ξ between x and a.

Proof: As a consequence of the IVT, for some ξ between x and a:∫ a

x
−f ′′(ã) · 1 dã∫ a

x
1 dã

= −f ′′(ξ)

because we know that ∫ a

x
−f ′′(ã) · 1 dã∫ a

x
1 dã

∈

[
inf

α∈[x,a]
−f ′′(ã), sup

α∈[x,a]
−f ′′(ã)

]

Reasonable eh? 2

Result 0.5

Therefore we have
R(a) = f ′′(ξ)(a − x)2

2
Therefore,

f(x) = f(a) + f ′(a)(x − a) + f ′′(ξ)(a − x)2

2 (x − a)2

for ξ ∈ [x, a].

Exercise: Do the same process for the 2nd order Taylor polynomial.

Example 0.26

What is the meaning for ∫ ∞

0

sin x

x
dx

x

y

Example: Suppose instead we have

lim
t→∞

∫ t

0

sin x

x
dx

if t is finite, then it is well-defined, the key reason for this is because this oscillates.
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Example 0.27

We first consider a special case:

lim
n→∞

∫ 2nπ

0

sin x

x
dx

Proof: Notice that the sum is bounded by 0 and a1, and the area keeps increasing as n → ∞. 2

Remark: Oopsies, time’s up for Chen.

Lec 12 - Fri - Feb 2 - 2024

Goal 0.6

We want to find ∫ ∞

0

sin x

x
dx = π

2

and make it rigorous.

What is the meaning? ∫ ∞

0

sin x

x
dx = lim

t→∞

∫ t

0

sin x

x
dx

the reason why we introduce the limit is because infinite partition does not make sense (not defined).

Why does the limit exist?

Example 0.28: Counter Example∫ ∞

1

1
x

dx = lim
t→∞

∫ t

1

1
x

dx = lim
t→∞

ln t = ∞

As an counterexample, the above does not exist as R. However, in our case, we can define

S2n =
∫ 2nπ

0

sin x

x
dx

x

y

Refering to the diagramm above, we denote each area of the region as {ai}i∈N, thus we have

S2n = a1 + (−a2 + a3) + (−a4 + a5) + · · · < a1

S2n+2 = S2n + (−a2n+1 + a2n+2) > S2n
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(note that we can group them because we have finite number of terms). As a result, we have

lim
n→∞

S2n exists

General Case

Goal 0.7

Claim:
lim

t→∞

∫ t

0

sin x

x
dx

exists.

Proof: We have ∫ t

0

sin x

x
dx = S2(n−1)π +

∫ t

2(n−1)π

sin x

x
dx

Suppose t ∈ (2(n − 1)π, 2nπ), notice that∫ t

2(n−1)π

sin x

x
dx ≤ 1

2(n − 1)π

∫ t

2(n−1)π

sin x dx

≤ 1
2(n − 1)π

∫ 2nπ

2(n−1)π

sin x dx︸ ︷︷ ︸
→ 0

which implies that the integral exists. 2

Remark: On the other hand, we here provide another alternative proof.
Proof: We have ∫ ∞

0

sin x

x
dx =

∫ 1

0

sin x

x
dx + lim

t→∞

∫ t

1

sin x

x
dx

Note that ∫ t

1

sin x

x
dx = −

∫ t

1

1
x

d cos x

= −cos x

x

∣∣∣t
1

−
∫ t

1

cos x

x2 dx

Now the question becomes:

Whether lim
t→0

∫ t

0

cos x

x2 dx exists or not?

Proof: SFAC it does not exist, then ∃ ϵ0 > 0 such that ∀ i, ∃ si ≥ ti ≥ i such that∣∣∣∣∣
∫ si

i

sin x

x2 dx −
∫ ti

1

sin x

x2 dx

∣∣∣∣∣ > ϵ0
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We can easily find out that

LHS =

∣∣∣∣∣
∫ si

ti

cos x

x2 dx

∣∣∣∣∣
≤
∫ si

ti

1
x2 dx

= − 1
x

∣∣∣si

t1

= − 1
si

+ 1
ti

<
1
ti

which contradicting since we have 0 ≥ ϵ0 > 0. 2

as desired. 2

Result 0.6

Here we have two results:

(a) Suppose ai → 0, then

lim
n→∞

n∑
i=0

(−1)iai

exists.

(b) Suppose |g| ≤ |f | (continuous), if ∫ ∞

0
|f | dx

exists, then ∫ ∞

0
|g| dx

exists.

Recall Feynmann’s Trick, we had

I(t) =
∫ ∞

0

sin x

x
e−tx dx t ≥ 0
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Our goal is to find I(0), we have

I ′(t) =
∫ ∞

0
− sin xe−tx dx = − 1

1 + t2 t > 0

⇒ I(0) =
∫ 0

∞
I ′(t) dt + I(∞)

=
∫ 0

∞
− 1

1 + t2 dx + I(∞)

= π

2

In this process, we assumed that
lim

t→0+
I(t) = I(0)

but we wonder why is this true?

Example 0.29

lim
t→0+

∫ ∞

0

sin x

x
e−tx dx =

∫ ∞

0

sin x

x
lim

t→0+
e−tx dx

Goal 0.8

We want to show
lim

t→0+

∫ ∞

0

sin x

x

(
e−tx − 1

)
dx

is small.

Proof: We have

lim
t→0+

∫ ∞

0

sin x

x

(
e−tx − 1

)
dx =

∫ N

0

sin x

x

(
e−tx − 1

)
dx︸ ︷︷ ︸

A

+
∫ ∞

N

sin x

x

(
e−tx − 1

)
dx︸ ︷︷ ︸

B

Hence we choose large enough N , we have |B| <
ϵ

2 , and we can choose small enough t such that |A| <
ϵ

2 . 2

Here we provide an alternative proof:
Proof: We have ∣∣∣∣∣

∫ ∞

N

sin x

x

(
e−tx − 1

) ∣∣∣∣∣ =

∣∣∣∣∣−
∫ ∞

N

e−tx − 1
x

d cos x

∣∣∣∣∣
=

∣∣∣∣∣ −e−tx − 1
x

cos x
∣∣∣∞
N︸ ︷︷ ︸

as N→∞, =0

+
∫ ∞

N

cos d

(
e−tx − 1

x

)
︸ ︷︷ ︸

as N→∞, =0

∣∣∣∣∣
as desired. 2
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Goal 0.9

Recall from the last example, we want to know that

(a) I(0) = I(0+) = limt→0+ I(t)

(b)
d

dt

∫ ∞

0

sin x

x
e−tx dx =

∫ ∞

0

d

dt

sin x

x
e−tx dx

Proof: of (a)
We want to know that ∫ ∞

0

sin x

x
dx = lim

t→0+

∫ ∞

0

sin x

x
e−tx dx

Hence it suffices to prove that∫ ∞

0

sin x

x
e−tx dx =

∫ N

0

sin x

x
(e−tx − 1) dx︸ ︷︷ ︸

A

+
∫ ∞

N

sin x

x
(e−tx − 1) dx︸ ︷︷ ︸

B

= 0

(i) Step 1: Choose N large, so that |B| <
ε

2

|B| = −
∫ ∞

0

e−tx − 1
x

d cos x

= e−tN − 1
N

cos(N) +
∫ ∞

N

cos x
d

dx

(
e−tx − 1

x

)
dx

where we can make both expression smaller than ε

4 , which is small enough for us to prove our argument.

(ii) Step 2: Fix N , choose δ so that if 0 < t < δ, then |A| <
ε

2

CLAIM: ∃ δ such that if 0 < t < δ, then
∣∣etx − 1

∣∣ <
ε

2M0
for all x ∈ [0, N ], where M0 = N · sup

[0,N ]

∣∣∣∣ sin x

x

∣∣∣∣.
As a result of the claim, we have∣∣∣∣∣

∫ N

0

sin x

x

(
e−tx − 1

)
dx

∣∣∣∣∣ ≤
∫ N

0

∣∣∣∣ sin x

x

∣∣∣∣ ε

2M0
dx

≤ N
∑
[0,N ]

∣∣∣∣ sin x

x

∣∣∣∣ ε

2M0

= ε

2

Thus it suffices to prove the claim:
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SFAC that for all 1
i
, ∃ 0 < ti < δi, but

∣∣etixi − 1
∣∣ ≥ ε

2M0

for some xi ∈ [0, N ]. However, since we know that xi exists in a closed interval and therefore as t → 0,
we have tixi → 0, and this implies that

0 =
∣∣e−tixi − 1

∣∣ ≥ ε

2M0
> 0

which is a contradiction.

thus we complete the prove. 2

Proof: of (b)
we know

d

dx

∫ ∞

0

sin x

x
e−tx dx = lim

h→0

∫ ∞

0

sin x

x

e−x(t+h) − e−tx

h
dx

and we have already shown that ∫ ∞

0

sin x

x
· d

dx
(e−tx) dx

exists, so it suffices to prove that

lim
h→0

∫ ∞

0

sin x

x

(
e−x(t+h) − e−tx

h
− (−xe−tx)

)
dx = 0

Remark: Repeat the prove in part (a)
GG 2

Lec 14 - Wed - Feb 7 - 2024

A Computation (wont be tested)

Notice that ∫ ∞

0

sin x

x
dx =

∫ ∞

0

eix

x
dx

We can view eix

x
as a function over C.
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Result 0.7

We have ∫
Cr,R

eiz

z
dz ≡ 0

(the intuition here is the displacement of you walking from point R to point R, which is essentially 0).

Proof: There exists F over

x

y

such that

dF

dz
= eiz

z

⇒
∫

Cr,R

eiz

z
dz =

∫
Cr,R

F ′(z) dz

dy
dt

=
∫

Cr,R

d F (z)
dt

dt

= F (R) − F (R) = 0

Therefore, try to evaluate the integral from 0 to ∞, we would like to have r → 0+ and R → ∞. Thus

∫
C∞

+
∫

C0+

+
∫ 0−

∞
+
∫ ∞

0
= 0
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Therefore we have ∫
CR

eiz

z
dz =

∫ π

0

eiReiθ

Reiθ
dReiθ

=
∫ π

0
iei(R(cos θ+i sin θ)) dθ

= i

∫ π

0
e−R sin θeiR cos θ dθ

Therefore we have that ∣∣∣∣∣
∫

Cr,R

eiz

z
dz

∣∣∣∣∣ ≤
∫ π

0
e−R sin θ dθ

and we know that the RHS approaches 0 as R approaches 0, thus completing the proof. 2

Lec 15 - Fri - Feb 8 - 2024

Goal 0.10

We want to explain why

sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!

Proof: By the taylor remainder theorem, we know that

sin x −
∞∑

n=0

(−1)nx2n+1

(2n + 1)! = sin(2n+3)(ξ)
(2n + 3)! (x − a)2n+3

and easy to find that the RHS is approaching 0 as n → ∞. 2

Goal 0.11

What if we dont know that the infinite sum is equal to sin x?

Note that for x fixed, we have that

(−1)nx2n+1

(2n + 1)! <
1
2n

for large n.

Result 0.8

Our claim is

Sn =
N∑

n=0

(−1)nx2n+1

(2n + 1)!

converges as N → ∞.
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Proof: SFAC that this is not true, thus we would have that ∃ ε0 > 0 such that ∀ N , ∃ AN ≤ BN ≤ N such
that ∣∣∣SAN

− SBN

∣∣∣ ≥ ε0 > 0

Notice that for the LHS, we have

∣∣∣SAN
− SBN

∣∣∣ =
AN∑

n=BN

∣∣∣ (−1)nx2n+1

(2n + 1)!

∣∣∣
≤

AN∑
n=BN

1
2n

1
2n

<
1

2BN −1

Similarly, we know that
∞∑

n=0

d

dx

(−1)nx2n+1

(2n + 1)!

also converges.
Therefore, we want to show that

d

dx

∞∑
n=0

(−1)nx2n+1

(2n + 1)! =
∞∑

n=0

d

dx

(−1)nx2n+1

(2n + 1)!

Recall the definition of derivative, STP that

lim
h→0

∞∑
n=0

(−1)n

(2n + 1)!

(
(x + h)2n+1 − x2n+1

h
− (2n + 1)x2n

)
= 0

We can split the summation into two parts as shown following:

∞∑
0

=
N∑
0

+
∞∑

N+1

Therefore, we can choose large enough N so that
∞∑

N+1
<

ε

2 , and for such fixed N , we can find small enough

h such that
N∑
0

is also smaller than ε

2 , thus we have completed the proof. 2

Lec 16 - Mon - Feb 12 - 2024

Recall from last lecture, we have that

1
x − 1 =

∞∑
n=0

xn for |x| < 1
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Goal 0.12

Our goal is to show that
d

dx

1
x − 1 =

∞∑
n=0

d

dx
xn

To do so, we need to show

1. The RHS is well-defined

2. Commutativity of the derivative

We first prove the first goal, that is, proving that the RHS is well-defined.

Theorem 0.10

Here comes the trick:
an :=

∣∣nxn−1∣∣
Therefore we can have

lim
n→∞

an
1
n = lim

n→∞
n

1
n |x|1− 1

n

= lim
n→∞

e
1
n ln n|x|1− 1

n

= |x|

⇒ an ≤
(

|x| + 1
2

)n

for n large

Proof: We can find that

lim
n→∞

an(
|x|+1

2

)n = lim
n→∞

(
an

1
n

|x|
· |x|

|x|+1
2

)n

Notice that for large n we would have an
1
n

|x|
= 1 and |x|

|x|+1
2

< 1, which yields us that

lim
n→∞

an(
|x|+1

2

)n = 0

thus proven convergence. 2

Goal 0.13

Now STP commutativity.
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Proof: We have

d

dx

∞∑
n=0

xn −
∞∑

n=0

d

dx
xn = lim

h→0

∞∑
n=0

(
(x + h)n − xn

h
− nxn−1

)

= lim
h→0

N−1∑
n=0︸ ︷︷ ︸

A

+ lim
h→0

∞∑
n=N︸ ︷︷ ︸

B

Hence we can choose N large so that |B| <
ϵ

2 , and then we can choose δ′ so that for all |h| < δ′, we have

|A| <
ϵ

2 . 2

Remark: We also need a range for h in part B to make smaller than ϵ

2 , thus, we need to choose
δ = min {δA, δB}.
Proof: Notice that by mean value theorem, we have

∞∑
n=N

(
(x + h)n − xn

h
− nxn−1

)

=
∞∑

n=N

(
n(x + ξnh)n−1 − nxn−1) for ξn ∈ [0, 1]

gg. 2

Result 0.9: Summary of Tricks

To wrap up, we have

1. For
∞∑

n=0
an, if |an| 1

n ≤ r ≤ 1 for large n, then
∞∑

n=0
an converges.

2. For
∞∑

n=0
an, if

∣∣∣∣an+1

an

∣∣∣∣ ≤ r ≤ 1 for large n, then
∞∑

n=0
an converges.
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Definition 0.10: Dirichlet’s Test

We want to analyze
N∑

n=1
anbn. Suppose Sn :=

N∑
n=1

bn, thus we have

N∑
n=1

anbn =
N∑

n=1
an (Sn − Sn−1)

=
N∑

n=1
anSn −

N∑
n=1

anSn−1

=
N∑

n=1
anSn −

N−1∑
n=1

an+1Sn

=
N∑

n=1
(an − an+1)Sn + aN SN

if |Sn| ≤ M < ∞ and an → 0, then we have

N∑
n=1

anbn converges

Definition 0.11: Abel

Suppose bn → b and
∞∑

n=1
an is convergent, then

∞∑
n=1

anbn =
∞∑

n=1
an(bn − b) +

∞∑
n=1

ban

is also convergent.

Lec 17 - Wed - Feb 14 - 2024

Goal 0.14

If fn(x) ⇒ f(x) and fn(x) is continuous, is f(x) continuous.

Example 0.30: Counter Example

One counter example would be fn(x) = xn, then lim
n→∞

xn is not continuous since over [0, 1],

lim
n→∞

fn(x) =

1 x = 1

0 x ̸= 1
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Consider the following reasoning:
Proof: We want to have f(x) to be continuous at x0: ∀ ϵ > 0, ∃ δ > 0 such that ∀ |x − x0| < δ, then
|f(x) − f(x0)| < ϵ.

Since we know that fn(x) is continuous, so

|fn(x) − fn(x0)| <
ϵ

3

and
|f(x) − f(x0)| ≤ |f(x) − fn(x)| + |fn(x) − fn(x0)| + |fn(x0) − f(x0)|

Step 1: for x fixed, we choose n so that |fn(x) − f(x)| <
ϵ

3 .

Step 2: for n fixed, we choose δ so that if |x − x0| < δ, we have |fn(x) − f(x0)| <
ϵ

3 .
However, this process is wrong since we choose x to find δ, so x is dependent on δ now. 2

Definition 0.12: Uniformly Convergent

fn is uniformly convergent to f over [a, b] if for any ϵ > 0, there exists N so that if n > N ,

|fn(x) − f(x)| < ϵ

for any x ∈ [a, b]. We fn ⇒ f .

Result 0.10

If fn is uniformly convergent to f , then fn continuous implies that f is also continuous.

Example 0.31

sin
(x

n

)
⇒ 0 over [−1, 1].

Example 0.32

We have xn
��⇒ 0 over [0, 1), since we know

xn → 1 as x → 1−

Example 0.33

We have nx sin
(

1
nx

)
��⇒ 1 over [−1, 1], since we have

n · 2
πn

sin
(

1
n · 2

πn

)
= 2

π
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Theorem 0.11

If fn → f over [a, b] and f continuous fn(xn) = f(x) for any xn → x ⇐⇒ fn ⇒ f over [a, b] and f is
continuous.

Proof:

1. (⇐=)
We have

fn(x) − f(x) = fn(xn) − fn(x)︸ ︷︷ ︸
=f ′

n(ξn)(xn−x)

+ fn(x) − f(x)︸ ︷︷ ︸
→0 by assumption

2. (=⇒)
Follow the above examples and steps.

thus completing the proof. 2

Theorem 0.12: Arzela-Ascolli

If |fn| ≤ C ≪ ∞, then fn → f over [a, b] implies fn ⇒ f .

Lec 18 - Fri - Feb 16 - 2024

Recall from last lecture, for fn(x) and f(x) continuous over [a, b]. If fn(x)��⇒ f(x), then there exists
xn → x ∈ [a, b] such that fn(x)��→ f(x).

Goal 0.15

Suppose fn → f , is it true that ∫ b

a

fn dx →
∫ b

a

f dx

1. Consider
nx sin

(
1

nx

)
+ (1 − |x|)n → 1 over [0, 1] as n → ∞

we have ∫ 1

0
nx sin

(
1

nx

)
+ (1 − |x|)n

= 1
n

∫ n

0
x sin

(
1
x

)
dx︸ ︷︷ ︸

1

+ −(1 − x)n+1

n + 1

∣∣∣1
0︸ ︷︷ ︸

0

2. For

fn(x) =

nxn−1 0 ≤ x < 1

1 x = 1
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Note that as n → ∞, we have

fn → f =

0 0 ≤ x < 1

1 x = 1

3. If fn(x) → 0, is it possible that
∫ 1

0
fn(x) dx = 1.

Theorem 0.13

If fn ⇒ f , then lim
n

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx.

Example 0.34

We have ∫ 1
2

0

∞∑
n=1

xn dx =
∞∑

n=1

∫ 1
2

0
xn dx

since
N∑

n=1
xn =

∞∑
n=1

over [0, 1/2]

Theorem 0.14: Monotone Convergence Theorem

If fn → f over [a, b], and f1 ≤ f2 ≤ . . . then

lim
n

∫ b

a

fn(x) dx =
∫ b

a

lim
n

fn(x) dx

=
∫ b

a

fn(x) dx

Theorem 0.15: Dini

If fn and f continuous and fn(x) ↗ f(x) for all x ∈ [a, b], so

fn ⇒ f

Proof: ∀ ϵ > 0, we want N such that if n ≥ N , so 0 < f(x) − fn(x) < ϵ for any x ∈ [a, b]. Define

Un :=
{

x ∈ [a, b] : f(x) − fn(x), ϵ
}

Claim: UN = UN+1 = · = [a, b] for large N .
Proof of the claim:
SFAC ∀ m, ∃ xm ∈ [a, b]\Um. However, xm ∈ [a, b] ⇒ xm → x ∈ [a, b], and since lim

n→∞

⋃
n

Un = [a, b], so

x ∈ Ui for some i ∈ N.
⇒ f(x) − fi(x) < ϵ
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However, by what we supposed, we have ϵ, f(xm) − fm(xm) ≤ f(xm) − fi(xm) ≤ ϵ, which is a contradiction.
2

Example 0.35

Considet the previous example, another justification would be

N∑
n=0

xn ↗
∞∑

n=0
xn over [0, 1/2]

Theorem 0.16: Dominated Convergence Theorem

For fn and f continuous and fn → f over [a, b], and |fn| ≤ M ≪ ∞, then

lim
n

∫ b

a

fn(x) dx =
∫ b

a

lim
n

fn(x) dx

TUT - Mon - Feb 26 - 2024

Weierstrass M-Test
Theorem 0.17: Weierstrass M-Test

Let A ⊆ R, and fk : A → R. Suppose ∃ Mk ≥ 0 such that |fk(x)| ≤ Mk for all x ∈ A, and
∞∑

k=1
Mk ≪ ∞.

Show that
∞∑

k=1
fk converges uniformly and absolutely on A.

Proof: Let Sm(x) =
m∑

k=1
fk(x). Let ϵ > 0, becuase we know that

∞∑
k=1

Mk ≪ ∞, choose N > 0 so that

m > n > N , then
m∑

k=n+1
Mk < ϵ. THen if x ∈ A, m > n > N , we will have

|Sm(x) − Sn(x)| =

∣∣∣∣∣
m∑

k=n+1
fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1
Mk < ϵ

Thus for each x ∈ A, {Sn(x)}n is Cauchy. Then we let S(x) = lim
n

Sn(x) =
∞∑

k=1
fk(x). If n > N, x ∈ A, then

|S(x) − Sn(x)| =
∣∣∣lim

m
Sm(x) − Sn(x)

∣∣∣
= lim

m
|Sm(x) − Sn(x)|

≤ lim
m

ϵ

= ϵ
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2

Example 0.36

Show that
∞∑

n=0

cos (2nx)
1 + n2 converges uniformly on R and compute

∫ π/4

0

∞∑
n=0

cos (2nx)
1 + n2 .

Example 0.37

Show that
∞∑

n=1
sin
( x

n2

)
converges uniformly on any closed interval [a, b].

Lec 19 - Mon - Feb 26 - 2024

We talked about Midterm

Lec 20 - Wed - Feb 28 - 2024

We talked about Midterm solutions

Lec 21 - Fri - Mar 1 - 2024

Remember from last lecture, we have that if

fn(x) → f(x) f ′
n(x) → g(x)

and f ′
n(x) is integrable, then we have

fn(x) =
∫ x

x0

f ′
n(x) dx + fn(x0)

⇒ f(x) = lim
n

∫ x

x0

f ′
n(x) dx + f(x0)

⇒ f(x) =
∫ x

x0

g(x) dx + f(x0)

the last arrow holds if, for exmaple, f ′
n(x) ⇒ g(x). Therefore, we find that if f ′

n(x) converges to g(x)
uniformly, then

df

dx
= g

Example 0.38

Justify that
xe−xe−xh ⇒ xe−x

as h → 0 over [0, 1].
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Proof: #1 We first use contradiction to prove that for all ϵ > 0, ∃ δ > 0 so that if |h| < δ, then

|xe−xe−xh − xe−x| < ϵ

∀ x ∈ [0, 1]. SFAC that ∃ ϵ0 > 0 such that ∀ 1
i , ∃ |hi| < 1

i , xi ∈ [0, 1], but

|xe−xe−xh − xe−x| > ϵ0

However, xi → x∞ and hi → 0, which implies that

|xe−xe−xh − xe−x| = |xe−x − xe−x| = 0 > ϵ0

which is a contradiction. 2

Proof: #2 It STP that ∣∣∣(xe−x(1 − e−xh)
)′
∣∣∣ ≤ C ≪ ∞

Let fh(x) := xe−x(1 − e−xh), so it STP fh ⇒ f0 and |f ′
h| ≤ C. The key in this method is that

fh(xh) → f0(x)

if xh → x and h → 0. Then we notice

fh(xh) − f0(x) = fh(xh) − fh(x)︸ ︷︷ ︸
f ′

h
(ξ)(xh−x)

+fh(x) − f0(x)

2

Result 0.11

If fn ⇒ f over [a, b], then

(1) fn continuous implies f is continuous

(2) lim
n

∫
fn =

∫
lim

n
fn

(3) f ′
n ⇒ g implies that f exists and f ′ = g, and

lim
n

d

dx
fn = d

dx
lim

n
fn
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Power Series

Notice

fN =
N∑

n=1
an(x − c)n

⇒ f ′
N =

N∑
n=1

nan(x − c)n−1

We can take teh derivative inside since we are summing up a finite sum. Thus if

lim
n→∞

|an(x − c)n|
1
n ≤ L < 1

then the series converges, where

lim
n→∞

|an(x − c)n|
1
n = lim

k→∞

(
sup
n>k

|an| 1
n (x − c)

)
Therefore it suffices to have (radius of convergence)

|x − c| < R := 1
limn→∞|an| 1

n

Notice that R′ for f ′
N is

R′ = 1
limn→∞|an| 1

n n
1
n

= 1
limn→∞|an| 1

n

= R

Suppose
∞∑

n=1
|an(x0 − c)n| converge, then we would have

1.
N∑

n=1
an(x0 − c)n ⇒

∞∑
n=1

an(x0 − c)n := S(x)

−x0 + 2c c x0 over [−x0 + 2c, x0]

2.
N∑

n=1
n · an(x0 − c)n−1 ⇒

∞∑
n=1

n · an(x0 − c)n−1 := S′(x)

over any proper subinterval [a, b] ⊆ [−x0 + 2c, x0] where a ̸= −x0 + 2c and b ̸= x0.
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Result 0.12

Over the interval |x − c| < R, we can do

−c + R c c + R

a b

1. ∫ b

a

∞∑
n=0

an(x − c)n dx =
∞∑

n=0
an

∫ b

a

(x − c)n dx

2.
dk

dxk

∞∑
n=0

an(x − c)n =
∞∑

n=0

dk

dxk
an(x − c)n
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Goal 0.16

Our goal is to justify that
ln(2) = 1 − 1

2 + 1
3 − · · ·

Method 1 : Lower Sum

1 − 1
2 + 1

3 + · · · + 1
2N − 1 + 1

2N
=
(

1 + 1
2 + · · · + 1

2N

)
− 2

(
1
2 + 1

4 + · · · + 1
2N

)
=
(

1 + 1
2 + · · · + 1

2N

)
−
(

1 + 1
2 + 1

3 + · · · + 1
N

)
= 1

N + 1 + · · · + 1
2N

= 1
N

1
1 + 1

N

+ · · · + 1
N

1
1 + N

N

which is essentially the lower sum of the function f(x) := 1
x+1 over the interval [0, 1]: notice that the above

expression is also equal to

N∑
k=1

1
N + k

=
N∑

k=1

1
N

1
1 + k

N

=
N∑

k=1
∆xkf(xk)

Therefore, as N → ∞, we can find that it approaches ln 2 (We can take the integral of the function from 0
to 1).
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Method 2 : Euler-Mascheroni γ Constant

It is easy to notice that

lim
n

(
1 + 1

2 + · · · + 1
n

− ln n

)
exists, since we know that

an = 1 + 1
2 + · · · + 1

n
− ln n ↘

bn = 1 + 1
2 + · · · + 1

n
− ln(n + 1) ↗

and easy to find that

lim
n→∞

an − bn = ln
(

n + 1
n

)
→ 0

Therefore, as a result,

1 − 1
2 + 1

3 + · · · + 1
2N − 1 + 1

2N
=
(

1 + · · · + 1
2N

)
− 2 · 1

2

(
1 + · · · + 1

N

)
=
(

1 + · · · + 1
2N

)
− ln 2N −

((
1 + · · · + 1

N

)
− ln N

)
+ ln 2

= ln 2

Method 3 : Taylor Expansion

We know that

f(x) = ln(1 + x) = x − x2

2 + · · · + (−1)N−1xN

N
+ f (N+1)(ξN )

(N + 1)! xN+1

and
(ln(1 + x))N = (−1)N−1 · (N − 1)!

(1 + x)N

Therefore, we have

ln 2 = 1 − 1
2 + 1

3 − · · · + (−1)N−1

N
+ (−1)N N !

(1 + ξN )N (N + 1)!

Notice that (−1)N N !
(1 + ξN )N (N + 1)! = 0 as N → ∞. Thus completing the proof.

Method 4:

We know that

1
x + 1 = 1 − x + x2 − x3 + x4 − · · ·

=
∞∑

n=1
(−1)nxn
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Therefore, we can know that ∫ t

0

1
x + 1 dx =

∫ t

0

∞∑
n=1

(−1)nxn dx

⇒ ln(1 + t) = t − t2

2 + t3

3 − t4

4 + · · ·

as long as |t| < 1. Note that when t = 1, LHS = ln 2, and the RHS is equal to the infinite series we want.
However, the things that is missing is that when t = 1, we cannot necessarily take the integral. Therefore
we consider the following process:

ln 2 = lim
t→1−

ln(1 + t) = lim
t→1−

∞∑
n=0

(−1)n

n + 1 tn+1

=
∞∑

n=0
lim

t→1−

(−1)n

n + 1 tn+1

if we can commute the limit and the sum. Therefore it remains to show that

lim
t→1−

∞∑
n=0

(−1)n

n + 1 tn+1 =
∞∑

n=0
lim

t→1−

(−1)n

n + 1 tn+1
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Goal 0.17

We want to show that

lim
t→1−

∞∑
n=0

(−1)n

n + 1 tn+1 =
∞∑

n=0
lim

t→1−

(−1)n

n + 1 tn+1

Equivalently, we would like to show that

lim
t→1−

∞∑
n=0

(−1)n

n + 1 (tn+1 − 1) = 0

Proof: Want to show that ∀ ϵ > 0, ∃ δ so that if 1 − δ < t < 1, then

lim
t→1−

∞∑
n=0

(−1)n

n + 1 (tn+1 − 1) < ϵ

1. Step 1:
Choose N large so that ∣∣∣∣∣

∞∑
n=N

(−1)n

n + 1 (tn+1 − 1)

∣∣∣∣∣ <
ϵ

2

for all 0.9 < t < 1.
Recall Abel’s test, we define

Sm :=
m∑

n=1

(−1)n

n + 1
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hence
∞∑

n=N

(−1)n

n + 1 (tn+1 − 1) =
∞∑

n=N

(Sn − Sn−1)bn

=
∞∑

n=N

Snbn −
∞∑

n=N

Sn−1bn

=
∞∑

n=N

Snbn −
∞∑

n=N−1
Snbn+1

= −Sn−1bn︸ ︷︷ ︸
→C·(tN+1−1)

+
∞∑

n=N

Sn (bn − bn+1)︸ ︷︷ ︸
→−C·(tN+1−1)

2. Step 2:
For fixed value of N , we want to find δ′ small such that if 1 − δ′ < t < 1, then∣∣∣∣∣

N∑
n=0

(−1)n

n + 1 (tn+1 − 1)

∣∣∣∣∣ <
ϵ

2

Remark: Note that this is essentially the proof for continuity.

Therefore, we can simply choose
δ = min

{
0.1, δ′}

thus completing the proof. 2

Result 0.13

In general, if
∑∞

n=1 anxn converges (uniformly) over |x| < R and
∑∞

n=1 anRn also converges, athen we
have ∫ R

0
f(x) dx =

∫ R

0

∞∑
n=0

anxn dx

=
∞∑

n=0
an

∫ R

0
xn dx

Goal 0.18

Our goal is ∫ 1

0

ln(1 + x)
x

dx = π2

12
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Notice that we have∫ 1

0

ln(1 + x)
x

dx =
∫ 1

0

x − x2

2 + x3

3 − · · ·
x

dx

=
∫ 1

0

∞∑
n=0

(−1)nxn

n + 1 dx

=
∞∑

n=0
(−1)n

∫ 1

0

xn

n + 1 dx

= 1 − 1
22 + 1

32 − 1
42 + 1

52 − · · ·

=
∞∑

n=1

(−1)n−1

n2

=
(

1 + 1
22 + 1

32

)
− 2

(
1
22 + 1

42 + · · ·
)

=
∞∑

n=1

1
n2 − 1

2

∞∑
n=1

1
n2

= π2

12

Therefore it remains to show the following
∞∑

n=1

1
n2 = π2

6

Proof: We notice that
sin x ≤ x ≤ tan x for x ∈

[
0,

π

2

]
Thus we have

1
(sin x)2 ≥ 1

x2 ≥ (cos x)2

(sin x)2

⇒ 1
(sin x)2 − 1 ≤ 1

x2 ≤ 1
(sin x)2

Define xk := k

2 · π

2 , and substitute it back to the inequality we obtained,

1
(sin xk)2 − 1 ≤ 1

x2
k

≤ 1
(sin xk)2

where we also define
2n−1∑
k=1

1
(sin xk)2 = Sn. As a result, we can easily find that

Sn − (2n − 1) ≤
2n−1∑
k=1

1
x2

k

≤ Sn

Remark: We need to think about this in the sense of geometry, refer to Xuemiao’s notes for details.
2

54



Lec 24 - Fri - Mar 8 - 2024

Goal 0.19: Stirling’s Approximation

Our goal is to justify the Stirling’s Approximation, that is

n! =
√

2πn
(n

e

)n

e
θn

12n

for some θ ∈ (0, 1).

We first introduce an to be
an = n! en

nn+ 1
2

Therefore it suffices to prove that
lim

n→∞
an =

√
2π · e

θn
12n

Notice that

an

an+1
=

n! en

nn+ 1
2

(n+1)! en+1

(n+1)n+1+ 1
2

=
(
1 + 1

n

)n+ 1
2

e

= e(n+ 1
2 ) ln(1+ 1

n )
e

We can discover that(
n + 1

2

)
ln
(

1 + 1
n

)
=
(

n + 1
2

)
· 2 · 1

2n + 1

(
1 +

1
(2n+1)2

3 + · · · +
1

(2n+1)2k

2k + 1 + · · ·

)

= 1 +
1

(2n+1)2

3 + · · · +
1

(2n+1)2k

2k + 1 + · · ·

≤ 1 + 1
3

(
1

(2n + 1)2k
+ · · · + 1

(2n + 1)2k
+ · · ·

)
= 1 + 1

3 ·
1

(2n+1)2

1 − 1
(2n+1)2

= 1 + 1
12 · 1

n(n + 1)

Therefore

1 ≤
(

n + 1
2

)
ln
(

1 + 1
n

)
≤ 1 + 1

12 · 1
n(n + 1)

⇒ 1 ≤ an

an+1
≤ e

1
12n(n+1)

⇒ an

e
1

12n

≤ an+1

e
1

12(n+1)
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and since an ↘ and an

e
1

12n

↗, and

an

e
1

12n

< an

so we know that there exists a ∈
(

an

e
1

12n
, an

)
such that

an

e
1

12n

≤ a ≤ an

⇒ a ≤ an ≤ ae
1

12n

⇒ ae
0

12n ≤ an ≤ ae
1

12n

⇒ an = ae
θn

12n for θn ∈ (0, 1)

⇒ n! =
√

na
(n

e

)n

e
θn

12n

Theorem 0.18: Wallis

We have
π

2 = lim
n→∞

1
2n + 1

(
(2n)!!

(2n − 1)!!

)2

Note that

(2n)!!
(2n − 1)!! = ((2n)!!)2

(2n)! = (2nn!)2

(2n)!

=
[
2n · a

√
n
(

n
e

)n]2
a
√

2n
( 2n

e

)2n

= a√
2

√
n

⇒ lim
n→∞

1
2n + 1 · a2n

2 = π

2

After computing we can obtain that a =
√

2.
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Goal 0.20

Here we justify why (
n + 1

2

)
ln
(

1 + 1
n

)
= 1 + 1

3
1

(2n + 1)2 + 1
5

1
(2n + 1)4 + · · ·
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Proof: We have for |x| < 1,  1
1−x = 1 + x + x2 + x3 + · · ·

1
1+x = 1 − x + x2 − x3 + · · ·

⇒

− ln(1 − x) = x + x2

2 + x3

3 + · · ·

− ln(1 + x) = x − x2

2 + x3

3 − · · ·

⇒ ln
(

1 + x

1 − x

)
= 2x + 2x2

3 + 2x5

5 + · · ·

⇒ 1
2x

ln
(

1 + x

1 − x

)
= 1 + x2

3 + x4

5 + · · ·

Therefore we can simply let x = 1
2n + 1, so we can have the desired outcome. 2

Goal 0.21

We also want to justify Wallis Lemma.

Proof: We have ∫ π
2

0
sin2n+1 x dx = (2n)!!

(2n + 1)!!∫ π
2

0
sin2n x dx = π

2
(2n − 1)!!

(2n)!!

Moreover, we know that

sin2n+1 x ≤ sin2n x ≤ sin2n−1 x

⇒
∫ π

2

0
sin2n+1 dx ≤

∫ π
2

0
sin2n dx ≤

∫ π
2

0
sin2n−1 dx

⇒ (2n)!!
(2n + 1)!! ≤ π

2
(2n − 1)!!

(2n)!! ≤ (2n − 2)!!
(2n − 1)!!

⇒ 2n

2n + 1
π

2 ≤ 1
2n + 1

(
(2n)!!

(2n − 1)!!

)2
≤ π

2

as desired. 2
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Goal 0.22

Our goal this time is to prove that

sin x

x
=
(

1 − x2

π2

)(
1 − x2

22π2

)(
1 − x2

32π2

)
· · ·

=
∞∏

n=1

(
1 − x2

n2π2

)
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1

Notice that the coefficient for x3 for LHS and RHS respectively is

−1
6 = − 1

π2 − 1
(2π)2 − · · ·

⇒ π2

6 = 1 + 1
22 + 1

32 + · · ·

2

Notice that

cos x = sin 2x

2 sin x
=

2x
(

1 − (2x)2

π2

)(
1 − (2x)2

(2π2)

)
· · ·

2x
(
1 − x2

π2

) (
1 − x2

22π2

)
· · ·

=
(

1 − 4x2

π2

)(
1 − 4x2

32π2

)
· · ·

Proof: Meaning of the RHS:

RHS = lim
N→∞

x

(
1 − x2

π2

)
· · ·
(

1 − x2

N2π2

)
= lim

N→∞
e

ln x
(

1− x2
π2

)
···
(

1− x2
N2π2

)
= lim

N→∞
e
∑N

n=1
ln
(

1− x2
n2π2

)
Formula:

sin x = sin
(

(2n + 1) x

2n + 1

)
= sin ((2n + 1)y)

= sin y · P (sin2 y)
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where P (t) = antn + · · · + a0. Hence our goal is to show that

sin ((2n + 1)y) = sin x = sin y · P (sin2 y)

= (2n + 1) sin y ·

(
1 − sin2 y

sin2 π
2n+1

)
· · ·

(
1 − sin2 y

sin2 nπ
2n+1

)

the leading “coefficient”, 2n + 1, is obtained from moving sin y to the left and take y = 0. Notice that when
n → ∞, we can find that

(2n + 1) sin x

2n + 1 → x

1 −
sin2 x

2n+1
sin2 π

2n+1
=

sin2 x
2n+1(

x
2n+1

)2 ·

(
x

2n+1

)2

(
π

2n+1

)2 ·

(
π

2n+1

)2

sin2 π
2n+1

→ x2

π2

And the following part are obtained from

sin((2n + 1)y) = Im
(

eiy(2n+1)
)

= Im
(
(cos y + i sin y)2n+1)

2
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Continue from last lecutre, let n → ∞, we would have

sin x = x

(
1 − x2

π2

)(
1 − x2

32π2

)
· · ·

However, notice that that in regard to the last term, we dont have

sin2 nπ

2n + 1 =
(π

2

)2

as n → ∞. But we can notice a pattern:

n

0 sin x

1 3 sin x
3 1 − sin2 x

3
sin2 π

3

2 5 sin x
5 1 − sin2 x

5
sin2 π

5
1 − sin2 x

5
sin2 2π

5
...

...
...

...
∞ → sin x

Notice how the tail does not matter, here is a better proof:
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We want to show that

lim
n→∞

(2n + 1) sin x

2n + 1 ·

(
1 − sin2 y

sin2 π
2n+1

)
· · ·

(
1 − sin2 y

sin2 nπ
2n+1

)

= x

(
1 − x2

π2

)
· · ·

Proof:

1. Step 1:
We first choose N large so that

n∏
k=N

(
1 − sin2 y

sin2 kπ
2n+1

)
s > 1 − ϵ

for any n ≥ n0

2. Step 2:
For N fixed from step 1, there exists n1 large so that if n > n1,∣∣∣∣∣(2n + 1) sin x

2n + 1

N−1∏
k=1

(
1 − sin2 y

sin2 kπ
2n+1

)
− x

(
1 − x2

π2

)
· · ·
(

1 − x2

n2π2

)∣∣∣∣∣ < ϵ

Combining step 1 and step 2, we take n ≥ max{n0, n1}, so the following follows naturally. 2
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Goal 0.23

Define fn : [0, ∞) → R by
fn(x) = nxe−nx

Find the pointwise limit f(x) = limn→∞ fn(x) and determine whether fn → f uniformly on [0, ∞).

Using L’Hopital’s Rule, we can obtain that

lim
t→∞

tx

(ex)t = lim
t→∞

1
(ex)t

= 0

and at x = 0, we also have nxe−nx = 0 → 0, hence we can find that

nxe−nx → 0 over [0, ∞)

Notice that the maximum of the function is at x = 1
n , where the function is evaluated to be e−1, which does

not converges to 0, thus we can conclude that the function is not uniformly convergent to 0.
Exercise: Show:

fn ⇒ f ⇒ fn(xn) → f(x) as xn → x
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we simply have

fn(xn) − f(x) A= fn(xn) − fn(x) + fn(x) − f(x)
B= fn(xn) − f(xn)︸ ︷︷ ︸

uni conv

+ f(xn) − f(x)︸ ︷︷ ︸
continuity

Goal 0.24

Define fn : [0, ∞) → R by
fn(x) = x

1 + nx2

Find the pointwise limit f(x) = limn→∞ fn(x) and determine whether fn → f uniformly on [0, ∞).

Notice that function converges to 0, because we can rewrite the function as

fn(x) =
x
n

1
n + x2

so the pointwise limit of the function is 0. Easy to notice that the function converges to 0 pointwisely over
[0, ∞), so we can only consider the interval [0, 1]. Recall that a2 + b2 > ab, so we have

x

1 + nx2 ≤ x

2
√

nx2
= 1

2
√

n

hence the function uniformly converges to 0.

Goal 0.25

Define fn : [0, ∞) → R by
fn(x) = x + n

x + 4n

Find the pointwise limit f(x) = limn→∞ fn(x) and determine whether fn → f uniformly on [0, ∞).

We can find that the function converges to 1
4 since we can rewrite the function as

fn(x) = x + n

x + 4n
=

x
n + 1
x
n + 4 → 1

4

We first prove that the function is not uniformly convergent over [0, ∞), we can simply take x = n for all
values of n.
Remark: Using the definition to prove the above statement.

Goal 0.26

Find
∫ 1

0
lim

n→∞
nx(1 − x2)n dx and lim

n→∞

∫ 1

0
nx(1 − x2)n dx.
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We can find that the first integral evaluate to be 0 since the limit goes to 0. For the second integral, we have∫ 1

0
nx(1 − x2)n dx = −1

2

∫ 1

0
n(1 − x2)n d(1 − x2)

= −1
2 · n

n + 1(1 − x2)n+1∣∣1
0 → 1

2

thus we can conclude that the function is not uniform convergent, because we have different solution when
commuting the integral and the limit.
Remark: The bad point in the function is when x approaches to 0, specifically, at x = 1

n .
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Goal 0.27

Find
lim

n→∞

∫ 4

1

arctan(nx)
x

dx =
∫ 4

1
lim

n→∞

arctan(nx)
x

dx

Easy to find that the RHS is simply π
2 ln 4. For the LHS, we can use the Mean Value Theorem to

have
lim

n→∞

∫ 4

1

arctan(nx)
x

dx = arctan(xξ)
∫ 4

1

1
x

dx

On the other hand, we can try to prove that

arctan(nx)
x

⇒
π

2 · 1
x

over [1, 4]

We can use the dominated convergence theorem, using the fact that∣∣∣∣arctan(nx)
x

∣∣∣∣ ≤ C ≪ ∞

Alternatively, we can also use Dini with the fact that

arctan(nx)
x

↗ π

2 · 1
x

Goal 0.28

Show that
N∑

n=1

cos(2nx)
1 + n2 ⇒

∞∑
n=1

cos(2nx)
1 + n2

Our goal is to show that for all ϵ, there exists N0 so that if N1 > N2 > N0, then∣∣∣∣∣
N1∑

n=1

cos(2nx)
1 + n2 −

N2∑
n=1

cos(2nx)
1 + n2

∣∣∣∣∣ for any x ∈ R
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Notice that the LHS is less than or equal to

N2∑
n=N1

cos(2nx)
1 + n2 ≤

N2∑
n=N1

1
1 + n2 ≤

∫ ∞

N1

1
1 + x2 dx

Goal 0.29

Show that
∞∑

n=1
sin
( x

n2

)
converges uniformly on any closed interval [a, b].

We have sin
( x

n2

)
≈ x

n2

Goal 0.30

Is it true that: If (fn) and (gn) converge uniformly on E then (fngn) converge uniformly on E.

Proof: Wrong, consider fn = x + 1
n and gn = x + 1

n , notice that fngn = x2 + 2x
n + 1

n2 , which is not uniform
convergent because 2x

n ��→0. 2

Goal 0.31

] Show that if (fn) and (gn) converge uniformly on E and f and g are bounded on E then (fngn)
converges uniformly on E.

Proof: We have

|fngn − fg| = |fn(gn − g) + (fn − f)g|

≤ |gn − g||f | + |fn − f ||g|

wwwww 2
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Goal 0.32

We want to identify whether

N∑
n=1

(−1)nxn

n + ln n
⇒

∞∑
n=1

(−1)nxn

n + ln n
over [0, 1]

Proof: We define

Sn :=
n∑

k=1

(−1)n

k + ln k
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We would like to show that LHS is a uniform Cauchy sequence∣∣∣∣∣
N1∑

n=1
· · · −

N2∑
n=1

· · ·

∣∣∣∣∣ =

∣∣∣∣∣
N2∑
N1

· · ·

∣∣∣∣∣
=

∣∣∣∣∣
N2∑
N1

(Sn − Sn−1)xn

∣∣∣∣∣
=

∣∣∣∣∣
N2∑
N1

Snxn −
N2∑

n=N1

Sn−1xn

∣∣∣∣∣
=

∣∣∣∣∣
N2−1∑
n=N1

Sn(xn − xn+1) + SN2xN2 − SN1−1xN1

∣∣∣∣∣
≤

∣∣∣∣∣
N2−1∑
n=N1

Sn(xn − xn+1)

∣∣∣∣∣+
∣∣SN2xN2 − SN1−1xN1

∣∣
≤

N2−1∑
n=N1

|Sn| (xn − xn+1) +
∣∣SN2xN2 − SN1−1xN1

∣∣
where we notice that the left sum is uniform, but it is hard to deal with the difference on the right. Alter-
natively, we could argue that the numerator is bounded, thus we could have

Sn :=
n∑

k=1
(−1)kxk = (−x) − (−x)n+1

1 + x

then∣∣∣∣∣
N2∑
N1

1
n + ln n

(Sn − Sn−1)

∣∣∣∣∣ =

∣∣∣∣∣ 1
N1 + ln N1

SN1 − 1
N2 + ln N2

SN2−1 +
N1∑

n=N2

(
1

n + ln n
− 1

n + 1 ln n + 1
)

Sn

∣∣∣∣∣
which is uniformly convergent. 2

Goal 0.33

Find the Taylor series centred at 0, and its interval of convergence, for f(x) = x

x2 − 6x + 8.

Proof: Notice that we have f(x) = x

(x − 2)(x − 4) = 2
x − 4 − 1

x − 2 = −2
4

1
1 − x

4
+ 1

2
1

1 − x
2

:

−2
4

1
1 − x

4
+ 1

2
1

1 − x
2

= −2
4

∞∑
n=0

(
−x

4

)n

+ 1
2

∞∑
n=0

(
−x

2

)n

=
∞∑

n=0

(
1
2

(
−1

2

)n

− 1
2

(
−1

4

)n)
xn

Exercise: Check the radius of convergence.
wwwww 2
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Goal 0.34

Find the Taylor series centred at π

4 , and its interval of convergence, for f(x) = sin x cos x

Proof: We have

f(x) = 1
2 sin(2x)

= 1
2 sin

(
2
(

x − π

4

)
+ π

2

)
= 1

2 cos
(

2
(

x − π

4

))
Recall that the taylor’s expansion for cos at x = 0 is

cos t =
∞∑

n=0

(−1)nt2n

(2n)!

thus

f(x) = 1
2

∞∑
n=0

(−1)n
(
2
(
x − π

4
))

(2n)! over R

2

Goal 0.35

Let 0 < a < b. Note that Q ∩ [a, b] is countable, say Q ∩ [a, b] = {q1, q2, q3, . . .}. Find the interval of

convergence of the power series
∞∑

n=1
qnxn.

Proof: To find the radius of convergence, we may find

lim sup
n→∞

(|qnxn|)
1
n < 1

from which we can obtain that the radius of convergence is R = 1. 2

Goal 0.36

Find the 4th Taylor polynomial centred at 0 for f(x) = ln(1 + x)
e2x

.

Proof: Long division 2
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Goal 0.37

Let f(x) = x3 + x + 1. Note that f is increasing with f(0) = 1, and let g(x) = f−1(x). Find the 6th
Taylor polynomial centred at 1 for the inverse function g(x).

Proof: g(f(x)) = x ⇒ g(x3 + x + 1) = x. 2

Lec 31 - Mon - Mar 25 - 2024

Goal 0.38

Let f(x) = (8 + x3)2/3. Find f (9)(0), the 9th derivative of f at 0.

Proof: Recall the Binomial Expansion, we have

(1 + x)α =
∞∑

n=0

(
α

n

)
xn for |x| < 1

Hence,

(8 + x3)2/3 = 82/3
(

1 +
(x

2

)3
)2/3

= 82/3

(
1 +

( 2
3
1

)(x

2

)3
+ · · · +

( 2
3
3

)((x

2

)3
)3

+ · · ·

)

Hence the nineth derivative is given by the term with power of 9, where the answer is

82/3
( 2

3
3

)(
1
2

)3·3
d9x9

dx9︸ ︷︷ ︸
=9!

2

Goal 0.39

Evaluate lim
x→0

xex2 − sin x

x − tan−1 x
.

Proof: We prove this using Taylor Expansion

xex2
= x

(
1 + x2 + (x2)2

2! + (x2)3

3! + · · ·
)

(1)

sin x = x − x3

3! + x5

5! − x7

7! + · · · (2)

x = x (3)

tan−1 x = x − x3

3 + x5

5! − x7

7! + · · · (4)
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2

Goal 0.40

Solve y′′ + y′ − 2y = x + 1 with y(0) = 1 and y′(0) = 2.

Proof: The formal solution is to write out y as a polynomial of x and compate the correpsonding coefficients.
Suppose y1 is a solution and y0 solves y′′

0 + y′
0 − 2y0 = 0, thus we have

y′′
1 + y′

1 − 2y1 = x + 1

y′′
0 + y′

0 − 2y0 = 0

⇒ (y1 + y0)′′ + (y1 + y0)′ − 2(y1 + y0) = x + 1

Hence we want to find the special solution, y1, that can be used to generate all other solutions. Notice that
y = −x

2 + C is one of them. Solving for C we find that C = −3
4 . Then, we would like to find a solution to

y′′ + y′ − 2y = 0. Notice that the solution would be e = ex and e−2x, thus completing the solution. 2

Tut - Mon - Mar 27 - 2024

Goal 0.41

Our goal is to evaluate 5
√

e so that the error is at most 1
1000 .

Lec 32 - Wed - Mar 25 - 2024

Consider the example

ln(2) = ln(1 + 1) =
∞∑

n=1

(−1)n−1

n

The first method was that we know

1
1 + x

=
∞∑

n=0
(−x)n |x| < 1

integration ⇒ ln(1 + x) =
∞∑

n=0

(−1)nxn+1

n + 1

Recall that we take the limit of x approaching 1 from the left side, and we commute the limit and the sum.
However, the commutativity process is the subtle step that needs to be reviewed carefully, since it does not
work for all cases. It is important to note that we don’t have the following comparison:∣∣∣∣∣

∞∑
n=N

(−1)nxn+1

n + 1

∣∣∣∣∣ ≤

∣∣∣∣∣
∞∑

n=N

(−1)n

n + 1

∣∣∣∣∣
But how can we make it right? We know that the right hand side converges, which is due to the reason that
it is alternating. It gives us a limit, which can be justified by the Dirichlet Test. (Or we can think about
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how we can group it in pairs in two different ways, which will then show that it is bounded between two
values, and it is monotone in either ways, so it definitely converges). Noticebly, the left hand side is

x − x2

2 + x3

3 − x4

4 + · · · for x ∈ [0, 1]

where we can do the same thing, that is, group the sum in pairs. If we group the first and the second, the
third and the fourth . . ., we can find that it turns out to be∣∣∣∣∣

∞∑
n=N

x2n+1

2n + 1 − x2n+2

2n + 2

∣∣∣∣∣ ≤

∣∣∣∣∣
∞∑

n=N

(
1

2n + 1 − 1
2n + 2

)∣∣∣∣∣
but how is the inequality obvious? We notice that the function x2n − x2n+1 ≥ 0, which is derivative of each
term on the left hand side.

Goal 0.42

Let a1 = 7
2 and for n ≥ 1 let an+1 = 6

2−an
. Determine whether (an) converges, and if so find the limit.

Proof: We notice that

an+1 − an = 6
5 − an

− 6
5 − an−1

= 6(an − an−1)
(5 − an)(5 − an−1)

Some induction is required to prove that the denominator is positive, and then we will find x = 6
5 − x

. 2

Goal 0.43

Let (xk)k≥0 be a sequence in R with |xk − xk−1| ≤ 1
k2 for all k ≥ 1. Show that (xk) converges in R.

Proof: We have

|xN ′ − xN | = |xN ′ − xN ′−1 + xN ′−1 − xN ′−2 + · · · + xn+1 − xN |

≤ 1
(N ′)2 + 1

(N ′ − 1)2 + · · · + 1
(N + 1)2

≤
∫ ∞

N

1
x2 dx

2

Goal 0.44

∞∑
n=0

√
n

2n2 + 1 convergent or divergent?

Proof: Integral test. 2
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Goal 0.45

∞∑
n=1

(−1)n21/n convergent or divergent?

Proof: Divergent. 2

Goal 0.46

∞∑
n=1

n!nn

(2n)! convergent or divergent?

Proof: Ratio test or Stirling’s Approximation. 2

Goal 0.47

∞∑
n=1

(
n sin−1

(
1
n

)
− 1
)

convergent or divergent?

Proof: Taylor expansion of inverse of sin. 2

Goal 0.48

Compute
∞∑

n=1

n

(n + 1)!

Proof: We can compute
∞∑

n=1

nxn−1

(n + 1)! =
( ∞∑

n=1

xn

(n + 1)!

)′

Alternatively, we have n = n + 1 − 1. 2
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Goal 0.49

Find the sum of each of the following series, if the sum exists

∞∑
n=1

n2

2n
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Proof: We can first find that the sum is convergent because 2n grows a lot faster than n2. To compute, we
compute

∞∑
n=1

n2xn = x

∞∑
n=1

n2xn−1

= x

( ∞∑
n=1

n2xn

)′

= x

(
x

∞∑
n=1

n2xn−1

)

= x

(
x

( ∞∑
n=1

n2xn

)′)′

which is a geometric sequence. 2

Goal 0.50

Find the sum of each of the following series, if the sum exists

∞∑
n=2

1
an−1an+1

where {an} is the Fibonacci sequence.

Proof: We have

1
an−1an+1

= 1
an−1(an + an−1)

= an + an−1 − an−1

anan−1(an + an−1)

= 1
anan−1

− 1
an(an + an−1)

= 1
anan−1

− 1
anan+1

which is in the form of bn + bn+1 2

Goal 0.51

Find the sum of each of the following series, if the sum exists

∞∑
n=3

2
n2 − 4

Proof: Similar as above. 2
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Goal 0.52

Find the sum of each of the following series, if the sum exists

∞∑
n=−1

e−(n ln 2)/2

Proof: We have e−(n ln 2)/2 = eln 2−n/2
2

Goal 0.53

Find the sum of each of the following series, if the sum exists

∞∑
n=2

6n2

n6 − 1

Proof: We have

6n2

n6 − 1 = 6n2

(n3 + 1)(n3 − 1)

= 3n2(n3 + 1 − (n3 − 1))
(n3 + 1)(n3 − 1)

= 3n2

n3 − 1 − 3n2

n3 + 1

2

Goal 0.54

Evaluate each of the following infinite products

∞∏
n=2

(
1 − 1

n2

)

Proof: we have 1 − 1
n2 = n2 − 1

n2 = (n − 1)(n + 1)
n2 . 2

Goal 0.55

Evaluate each of the following infinite products

∞∏
n=0

(
1 + 1

22n

)

Proof: As a hint, we compute
(

1 − 1
2

) ∞∏
n=0

(
1 + 1

22n

)
instead. 2
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Goal 0.56

Evaluate each of the following infinite products

∞∏
n=2

n3 − 1
n3 + 1

Proof: We factorize it and get

n3 − 1
n3 + 1 = (n − 1)(n2 + n + 1)

(n + 1)(n2 − n + 1)

2

Goal 0.57

If
∑

an converges, then
∑

ean diverges.

Proof: The statement is true because we know that an → 0, and thus the right hand side is bounded below
by sum of infinitely many 1’s. 2

Goal 0.58

If
∑

an converges, then
∑

a2
n converges.

Proof: Construct (−1)n−1
√

n
which is a counterexample. 2

Goal 0.59

If
∑

an converges and
∑

|bn| converges, then
∑

anbn converges.

Proof: The statement is true. 2

Goal 0.60

If f(x) is positive and continuous and
∫ ∞

1
f(x) dx converges, then

∑∞
n=1 f(x) converges.

Proof: The statement is false. 2
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Goal 0.61

If limn→∞
an

bn
= 1 then (

∑
an converges ⇐⇒

∑
bn converges ).

Proof: Consider the sequence that a2n = 1√
2n

and a2n+1 = −a2n, and bn = 1
2n + 1√

2n
, thus we have

constructed a counterexample. 2

Goal 0.62

If
∑

an converges then
∑ an

1+an
converges.

Proof: False. 2

Theorem 0.19

Riemann Series Theorem

Example 0.39

We have ∫
dx

x(ln x)3 =
∫

d ln x

(ln x)3

Example 0.40

Compute ∫
sin

√
x dx =

∫
sin

√
x d
(√

x
)2

=
∫

2
√

x sin
√

x d
√

x

Example 0.41

Compute ∫ √1 + x

1 − x
dx =

∫ 1 + x√
1 − x2

dx
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Example 0.42

Compute ∫
cos2n θ dθ =

∫ (
cos2 θ

)n
dθ

=
∫ (1 + cos 2θ

2

)n

dθ

Example 0.43

Compute ∫
(x ln x)2

dx =
∫

(ln x)2
d

x3

3

Lec 34 - Wed - Apr 3 - 2024

Example 0.44

Compute ∫
(x ln x)2

dx =
∫

(ln x)2
d

x3

3

Lec 35 - Friday - Apr 5 - 2024

Example 0.45

Compute

∫ √
8

√
3

√
1 + x2

x
dx

Take x = tan θ.

Example 0.46

Compute ∫ 5

3

√
x2 − 9
x2 dx

Take x = 3 sec θ.
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Example 0.47

Compute ∫ π/6

−π/6
sin 2x sin 3x dx

We have
sin A sin B = − cos(A + B) + cos(A − B)

2

Example 0.48

Compute ∫ π2

0
sin2 √

x dx =
∫ π2

0
sin2 √

x d(
√

x)2

Example 0.49

Compute∫ π/2

0
cos2n(x) dx =

∫ π/2

0
cos2n−1(x) d sin(x)

= cos2n−1(x) sin(x)
∣∣∣π/2

0
−
∫ π/2

0
sin(x)(2n − 1) cos2n−2(x)(− sin(x)) dx

Example 0.50

Compute ∫ π

0

sin(nx)
sin(x) dx =

∫ π

0

sin[(n − 1)x + x]
sin(x) dx

=
∫ π

0

sin(n − 1)x cos x

sin x
dx +

∫ π

0
cos(n − 1)x dx

the expression on the left is symmetric about the line x = π/2.

Example 0.51

Compute ∫ sin x

sin x + cos x
dx

We use Weierstrass Substitution, taking t = tan x/2.
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Example 0.52

Compute ∫ π/2

π/4

x dx

(sin x + cos x)2

Example 0.53

Compute ∫ 2

1
(1 + 2x2)ex2

dx

Integration by parts.

Example 0.54

Compute ∫ 3

1

3
√

5 − x
3
√

5 − x + 3
√

1 + x
dx

we have
a + b =

(
a1/3 + b1/3

)((
a1/3

)2
+
(

b1/3
)2

− a1/3b1/3
)
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